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[1] Quantifying partitioning of precipitation into evapo-
transpiration (ET) and runoff is the key to assessing water
availability globally. Here we develop a universal model
to predict water-energy partitioning (ϖ parameter for the
Fu’s equation, one form of the Budyko framework) which
spans small to large scale basins globally. A neural network
(NN) model was developed using a data set of 224 small
U.S. basins (100–10,000 km2) and 32 large, global basins
(~230,000–600,000 km2) independently and combined based
on both local (slope, normalized difference vegetation index)
and global (geolocation) factors. The Budyko framework
with NN estimated ϖ reproduced observed mean annual ET
well for the combined 256 basins. The predicted mean
annual ET for ~36,600 global basins is in good agreement
(R2 = 0.72) with an independent global satellite-based ET
product, inversely validating the NN model. The NN model
enhances the capability of the Budyko framework for
assessing water availability at global scales using readily
available data. Citation: Xu, X., W. Liu, B. R. Scanlon,
L. Zhang, and M. Pan (2013), Local and global factors controlling
water-energy balances within the Budyko framework, Geophys.
Res. Lett., 40, 6123–6129, doi:10.1002/2013GL058324.

1. Introduction

[2] Partitioning of precipitation at the land surface into
evapotranspiration (ET) and runoff (Q) reflects the hydrologic
response to land use and climate forcing, impacting water

availability globally. While development and application of
global and regional land surface models has been increasing
rapidly within the past couple of decades [Pitman, 2003;
Rodell et al., 2004; Xia et al., 2012], there is increased interest
in more simple, robust approaches to evaluating water-energy
balances using approaches such as the Budyko framework
[Williams et al., 2012; Zhang et al., 2012]. The Budyko frame-
work is a simple but effective tool for assessing linkages and
feedbacks between climate forcing and land surface character-
istics on water and energy cycles at basin scales that has been
applied globally [Milly and Shmakin, 2002; Zhang et al.,
2012]. Budyko [1974] originally assumed that the curve
without any parameter was appropriate for large basins and
long-term averages. However, deviations of measured data
from this relationship (curve) were observed, and considerable
work has been done to explain these deviations, attributing
them to variability and seasonality in climate, to soil character-
istics, to vegetation type, and to the scales of analyses
[Donohue et al., 2007]. In order to account for these factors,
several analytical equations have been proposed for the
Budyko curve with new parameters added, among which
two one-parameter equations (see equation (1) [Fu, 1981;
Zhang et al., 2004] and equation (2) [Choudhury, 1999]) are
most widely used
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where P and ETP are precipitation and potential ET, respec-
tively. Yang et al. [2008] showed that the two equations are
equivalent withϖ = n+0.72. The parameters ϖ and n control
the water-energy partitioning and determine the shape of the
Budyko curve and reflects the influences of basin characteris-
tics. ET/P is termed the evaporation index and ETP/P is termed
the dryness index. Application of the Budyko model requires
steady state conditions, which are generally achieved by using
data at time scales significantly longer than 1 year [Gentine
et al., 2012; Roderick and Farquhar, 2011].
[3] A value of ϖ = 2.6 (i.e., n = 1.9 in equation (2)), [see

Choudhury 1999 and Donohue et al., 2012] was assumed
as a default value for the Budyko curve (equation (1)) when
applied to different basins. Using historical observations
at annual time scale (P, ETP, ET =P � Q, where Q is catch-
ment scale runoff), the parameter ϖ can be determined
for individual basins and deviated from the value of 2.6
[Li et al., 2013; Yang et al., 2007; Yang et al., 2009].
However, ϖ cannot be estimated from ungauged basins,
highlighting the need to estimate ϖ independently using
other data. Previous studies by Zhang et al. [2004] showed
that ϖ is higher for forested catchments (2.8) relative to
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grassland catchments (2.4), reflecting potential higher ET in
forested catchments. The importance of vegetation was
emphasized by Donohue et al. [2007] who pointed out that
the Budyko model should explicitly include vegetation
information before it can be extended to small basins. Yang
et al. [2009] found that vegetation played opposite roles (i.e.,
increased ET in one and decreased ET in another) for two
groups of basins in different climatic zones. Li et al. [2013]
developed a model using NDVI (normalized difference vege-
tation index) that applied to 26 large basins (≥ 300,000 km2);
however, the model did not adequately fit smaller basins
(≤50,000 km2). Other explanatory variables including climate,
soil, and topographic factors were also used for estimating
ϖ in different studies [Donohue et al., 2012; Milly, 1994;
Shao et al., 2012; Yang et al., 2007, 2009]. These studies
vary in terms of basin areas, number of basins considered,
and explanatory variables used. However, none of these models
apply to basin areas ranging from small (< 1000 km2) to large
(> 10,000 km2) scales.
[4] The objective of this study was to develop models to

assess water-energy partitioning that spans a range of basin
scales from small to large using readily available data and
evaluated independently using other data sets. Unique
aspects of this study include development of models to
estimate the ϖ parameter in the Fu’s equation using 224
small U.S. basins (100–10,000 km2) and 32 large, global
basins (~230,000 to 600,000 km2) and a combined data set
including both.

2. Materials and Methods

2.1. Data Sources

[5] Different groups of basins were used to train the models
for estimating ϖ.
[6] 1. Small basins

There are ~ 400 basins in MOPEX (International Model
Parameter Estimation Experiment) data set across diverse
climate, vegetation, and soil conditions in the U.S. [Duan
et al., 2006]. A total of 224 basins were selected for this study
based on data availability (Figure 1a) to represent small basins
spanning 1948–2003 with drainage areas ranging from ~100
to 10,000 km2 (median 2300 km2). Daily data (P, ETP, and
Q) were aggregated into annual values. Note that ETP data in
MOPEX are based on climatology which is appropriate for
our study of the long-term mean state [Gentine et al., 2012;
Wang and Hejazi, 2011]. MOPEX also provides basin bound-
aries andNDVI that were used in this study. Topographic vari-
ables (elevation, slope gradient, slope aspect, and compound
topographic index (CTI)) at 1 km resolution were extracted
from HYDRO1K data sets (http://eros.usgs.gov/#/Find_Data/
Products_and_Data_Available/gtopo30/hydro).
[7] 2. Large Basins

A total of 32 large basins ranging from~230,000 to 600,000 km2

area (median ~100,000 km2) were selected from Pan et al.
[2012] (Figure 1b). Basin averaged monthly data (P, Q)
were aggregated into annual data (1984–2006). Potential
ET was obtained from CRU TS 3.20 (1901–2011; 0.5°

c)a)

b)

Figure 1. (a) 224 MOPEX basins, (b) 32 large basins from Pan et al. [2012], and (c) long-term mean annual evaporation
ratio (ET/P) versus dryness index (ETP/P) for 224 small basins (MOPEX, U.S.) and the 32 large basins. ϖ is the parameter
of Fu’s equation; P is precipitation; ET is evapotranspiration, defined as P minus runoff; ETP is potential ET.
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resolution, Climatic Research Unit (CRU) TS (time series)
version 3.20 gridded data (http://www.cru.uea.ac.uk/cru/data/
hrg/)). Topographic variables (elevation, slope gradient, slope
aspect, and CTI) were extracted from HYDRO1K data sets.
NDVI (1981–2006; spatial resolution 0.073°) was acquired
from the GIMMS (Global Inventory Modeling and Mapping
Studies) data set (http://glcf.umd.edu/data/gimms/).
[8] 3. Combined Small and Large Basins

A third data set (256 basins) was developed by combining the
small (224 MOPEX) and large (32) basins to train a global
model for estimating ϖ. The long-term mean annual evapo-
ration ratio (ET/P) versus dryness index (ETP/P) for the
256 basins is shown in Figure 1c. Note that the third group
of basins is only a combination of the first and the second
groups rather than an independent data set.
[9] An independent global data set of ~36,600 basins from

HYDRO1K was used to apply the proposed models. The
basins were selected according to availability of data on eleva-
tion (ele), slope gradient (slp), slope aspect (asp), and compound
topographic index (CTI). The climate data (precipitation and po-
tential ET) from CRU TS 3.20 (Climatic Research Unit (CRU)
time series (TS) version 3.20 gridded data (http://www.cru.uea.
ac.uk/cru/data/hrg/)) and NDVI data from GIMMS were used.
[10] The Budyko framework (Fu’s equation, equation (1))

with ϖ estimated from the proposed methods in this study
was further evaluated by comparing estimated ET for ~36,600
global basins using an independent, remote sensing-based ET

product of Zhang et al. [2010]. The global ET gridded product
(resolution 0.073°; time period 1983–2006) was developed
based on a satellite remote sensing-based evapotranspiration
algorithm that was validated using eddy-covariance tower
flux data sets. The algorithm quantifies canopy transpiration
and soil evaporation using a modified Penman-Monteith
approach with biome-specific canopy conductance deter-
mined from NDVI. The algorithms were applied globally
using advanced very high resolution radiometer GIMMS
NDVI, National Centers for Environmental Prediction/
National Center for Atmospheric Research Reanalysis daily
surface meteorology, and NASA/Global Energy and Water
Cycle Experiment Surface Radiation Budget Release-3.0
solar radiation inputs.

2.2. Methods

[11] The parameter ϖ of equation (1) was optimized (cali-
brated) with annual values of P, ETP, and ET (P�Q) over a
period of at least 23 years for each of the 256 basins using a
least squares technique, and is referred to as “optimized ϖ.”
This study assumes that the water storage change approaches
zero at annual time scale and hence ET can be considered as
the difference between P and Q [Donohue et al., 2010]. This
study is an extension of the Budyko framework as equation
(1) was optimized using annual data.
[12] To develop estimation models of ϖ for different

groups of basins (224 MOPEX small basins, 32 large basins,

a)

d)c)b) e)

f) g) h)

Figure 2. (a) Boxplot of the optimized (calibrated)ϖ values for three groups of basins (224 small MOPEX basins, 32 large
global basins, and the combined 256 basins), and the estimated ϖ values from the NN model for ~36600 global basins; the
optimized (calibrated) ϖ versus ϖ estimated from proposed models (MLR and NN) for (b) MOPEX basins, (c) 32 large
basins, and (d and e) the combination of the 32 large basins and 224 MOPEX small basins; the observed evapotranspiration
(ET) versus the ET estimated by Budyko model with (f) optimized (calibrated) ϖ, (g) MLR model’s estimates of ϖ, and (h)
NNmodel’s estimates ofϖ. Note that each point represents one basin (long-term mean value for each basin) for Figures 2b–2g.
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and their combination), a stepwise multiple linear regression
(MLR) technique was used to fit the optimized ϖ values
against a group of different independent variables. The fol-
lowing variables were considered: elevation (m), basin center
latitude (absolute value of �90° (S) to 90° (N)), basin center
longitude (�180° (W) to 180° (E)), drainage area (km2),
slope gradient (degree), slope aspect (cosine), compound
topography index (usually titled wetness index), and NDVI
(long-term mean value). Note that all of the variables, except
basin center, represent the spatial mean for each basin. The
model for the combined 224 MOPEX and 32 large basins is
called global MLR model hereafter.
[13] To improve the performance of global MLR model,

we applied a neural network (NN) tool to build a new
model, called NN model. Selected variables from the global
MLR model were used as inputs for the NN model; 70%,
15%, and 15% of the 256 basins were used to train, vali-
date, and test the neural network, respectively; a two-layer
feed-forward network with two sigmoid hidden neurons
and one linear output neuron was used, and the network
was trained with Levenberg-Marquardt back propagation
algorithm. The R2 (root-mean-square error (RMSE)) for
the training, validation, and testing are 0.83 (0.13), 0.83
(0.22), and 0.84 (0.16), respectively. The final net struc-
ture file (net) of the trained NN model is provided in
supporting information.
[14] Performance of the proposed models for estimating ϖ

was evaluated by comparing estimated ET using equation (1)
against observed ET (i.e., P � Q). We also applied the Fu’s
equation (equation (1)) with the NN model-estimated ϖ to
the ~36,600 basins globally to estimate ET. CRU climate
data (P and ETP) from 1983 through 2006 were used, and
the estimated ET was compared with the ET product of
Zhang et al. [2010] for the same period to evaluate the perfor-
mance of equation (1) in estimating ET and thereby perfor-
mance of our proposed model in estimating ϖ.

3. Results and Discussion

3.1. Characteristics of the ϖ Parameter

[15] Values of ϖ (Figure 2a) have similar ranges for small
(MOPEX) basins (1.0–4.9) and large basins (1.3–4.6) but
higher median values for small basins (2.6) relative to large
basins (1.8). We also found that higher standard deviation
in ϖ for large basins (0.72) than small basins (0.65). This
might be that compared to small basins with MOPEX data
set represented within U.S., large basins are distributed
worldwide covering wider geographic locations that might
increase the spatial variation (larger spread) of ϖ. Combining
small (224) and large (32) basins results in a median ϖ value
of 2.5. The range in ϖ values from this study is similar to that
developed from analysis of ~ 470 basins globally by Zhang
et al. [2004] (1.7–5.0) with optimal values of ϖ higher for
forested basins (2.8) relative to grassland basins (2.4). The
range in ϖ values for this study also compares favorably with
that from 108 nonhumid basins in China (1.3–4.6, median
2.9) [Yang et al., 2007] and from 97 basins within Murray
Darling Basin in Australia (1.8–3.8) [Donohue et al., 2011].
Using 26 out of the 32 large basins used in this study, Li
et al. [2013] found that ϖ ranges from 1.3 to 3.9 with the
median value at 1.7 (extracted from Figures 3 and 4 in Li et al.
[2013]), which is similar to our estimates (1.3 to 4.6 with the
median value at 1.8).

3.2. Models for Estimation of ϖ

[16] A total of five out of eight explanatory variables were
selected in the final model for the 224 MOPEX small basins

ϖ ¼ 5:05722� 0:09322 latþ 0:13085CTIþ 1:31697NDVI
þ 0:00003A� 0:00018 elev (3)

where lat is absolute latitude of basin center, A is drainage area,
and elev is elevation. This model explains 63% of observed
variance (the optimized ϖ) with RMSE of 0.40 (Figure 2b)
and with lat explaining 43%, CTI 14%, NDVI 3%, A 2%,
and elev 1% of variance.
[17] The final model for the 32 large basins is as follows:

ϖ ¼ 0:69387� 0:01042latþ 2:81063NDVI
þ 0:146186CTI (4)

[18] This model explains 86% of observed variance with
RMSE of 0.28 (Figure 2c) and with lat explaining 72%,
NDVI 11%, and CTI 3% of variance.
[19] Combining the MOPEX and global data sets resulted

in the following model:

ϖ ¼ 3:50412� 0:09311slp� 0:03288 latþ 1:12312NDVI
� 0:00205long� 0:00026elev (5)

where slp is slope gradient. This global MLR model explains
53% of observed variance with RMSE of 0.47 (Figure 2d)
and with slp explaining 27%, lat 17%, NDVI 5%, long 2%,
and elev 2% of the variance.
[20] Although the globalMLRmodel (equation (5)) explains

about half of the variance of the optimizedϖ, the predictive ca-
pacity of ϖ is weak, particularly at the high end (Figure 2d).
Empirical models for estimating ϖ seem to be more easily
developed for large basins than for small basins (Figures 2b,
2c, and 2d) [Li et al., 2013]. This may reflect the heterogeneity
in terms of climate, soil, vegetation, and geology incorporated
in large basins whereas small basins are more homogeneous
and distinct from one another which may be more difficult to
capture. The NN (neural network) model performed better than
the MLR model (Figure 2e versus Figure 2d), with higher
explained variance (69% relative to 53%) and lower RMSE
(0.38 relative to 0.47). The Fu’s equation with optimized ϖ
(Figure 2f) accurately estimates long-term mean ET when
compared with observed ET (i.e., P � Q) for the 256 basins
(224 MOPEX plus 32 large basins), which demonstrates that
our optimization using annual data for individual basins is
appropriate and the optimizedϖ can be used in the Fu’s equa-
tion to estimate long-term mean ET for individual basins. The
Fu’s equation with ϖ determined from the NN model better
predicts ET relative to the Fu’s equation with ϖ from the
MLR model (R2: 0.87 versus 0.84; RMSE: 66 versus 73 mm,
see Figure 2h versus Figure 2g).
[21] Geographical location (latitude) and NDVI are com-

mon factors among the three models (equations (3), (4), and
(5)). The three models suggest that both global factors (lati-
tude, longitude, and elevation) and local factors (vegetation,
slope gradient, CTI, and drainage area) control the water-
energy balance within the Budyko framework. The physical
basis of the Budyko framework is that ET is limited either
by available water or by atmospheric evaporative demand
(available energy). All the explanatory variables we used were
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chosen to help better confine this supply/demand relationship.
For example, slope regulates the lateral water redistribution
and thus available water for ET; decreasing latitude increases
incoming solar radiation, while longitude determines the
distance to the sea and thereby rainfall sources; elevation is
an integrated indicator of environmental conditions but it
may mainly reflect the temperature gradient because of its
inverse relationship with ϖ (equation (5)); vegetation (NDVI)
directly influences rainfall redistribution, e.g., vegetation cover-
age controls water interception, and roots control infiltration,
uptake, recharge, and runoff. All of the selected factors in our
model (equation (5)) are commonly used in studies of climate,
ecology, and hydrology. Although specific factors explicitly
reflecting the effects of climate seasonality, which were found
to be important in many studies [Potter et al., 2005; Williams
et al., 2012], were not considered in this study, the geolocation
information may implicitly carry some seasonality information.
Therefore, the proposed models for estimating ϖ in this study

are overall theoretically reasonable and most likely reflect
underlying ecohydrologic mechanisms. With estimated ϖ, the
Fu’s equation reproduced mean annual ET for the 256 basins
(Figure 2e), which validated our NN model in estimating ϖ
with readily available inputs.
[22] Different models of estimating ϖ have been devel-

oped in previous studies for specific conditions. For example,
Yang et al. [2007] proposed a model (R2 = 0.49) with soil
hydraulic properties and slope as inputs, and then further
added vegetation information [Yang et al., 2009]; Donohue
et al. [2012] derived a model with mean storm depth within
a day, plant available soil water holding capacity, and effec-
tive rooting depth as inputs; Li et al. [2013] proposed a model
(R2 = 0.63, RMSE= 0.32) with vegetation fraction as the only
input; Shao et al. [2012] identified climatic factor, relief ratio,
and vegetation as important factors.
[23] Compared with previous models, our model (NN

model) applies to both small and large basins; the NN model

c)

a) b)

d) e)

Figure 3. Spatial distribution of (a) ϖ values estimated from NN model for the ~36600 global basins, and (b) mean annual
(1983–2006) ET (mm) estimates of Fu’s equation with the parameterϖ estimated fromNNmodel for the ~36600 global basins;
mean annual ET estimated from Fu’s equation with NN’s estimates ofϖ versus ET from Zhang et al. [2010] for global basins,
(c) each point represents multiyear (1983–2006) average for one basin; (d) Budyko curve based on ET from this study (theX axis
was log-transformed), (e) Budyko curve based on ET from Zhang et al. [2010] (the X and Y axes were log-transformed).
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(Figure 2e) performed better (R2 = 0.69 and RMSE=0.38)
than previous models; inputs for our model in estimating ϖ
only include basin characteristics (e.g., elevation, slope gra-
dient, latitude, longitude, and NDVI) that are readily avail-
able, and do not include any climatic factors. We argue that
it is better if ϖ is estimated independently of climatic factors
because climatic factors (P and ETP) are already incorporated
as inputs to the Fu’s equation (Budyko framework) and in-
cluding them in estimation of ϖ results in cross-correlation
issues (equation (1)). Noticeably, all of the models (from
both our and previous studies) include vegetation information
(e.g., NDVI and its derived variables), and this emphasizes the
importance of vegetation in regulating ecohydrologic pro-
cesses [Donohue et al., 2007, 2010; Gentine et al., 2012].
However, we also noticed that the variance explained by
NDVI seems low (11% for the 32 large basins, equation
(4)), and much lower than the result (equation (10)) from Li
et al. [2013]; it is because of the cross correlations of NDVI
with other factors, and the variance explained by NDVI alone
can be increased to>70% for the 32 large basins if only NDVI
is considered.

3.3. Estimation of Terrestrial ET at Global Scale

[24] The NN model was applied to ~36,600 basins globally
(Figure 3a). Results show thatϖ decreases from the equatorial
zone to high latitudes corresponding to the pattern of solar
radiation. The NN estimated ϖ (Figure 2a) ranges from 1.0
to 5.0 (mean 2.2; median 1.9) for the ~36,600 basins.
[25] With the estimated ϖ value from the NN model for

each basin, the Fu’s equation (equation (1)) was used to esti-
mate ET for the ~36,600 basins. Mean annual ET (1983–
2006) (Figure 3b) has a similar spatial pattern with that of
ϖ values (Figure 3a). The Fu’s equation estimated mean an-
nual ET has a high correlation (R2 = 0.72) with independently
estimated ET from Zhang et al. [2010], although there are
many points where ET values from this study are much lower
than those of Zhang et al. [2010] (Figure 3c). This difference
may result from ET estimates in this study being constrained
by ETP (energy availability) and P (water availability, the
water limit line in Figure 3d), which reflects the assumptions
of the Budyko framework (water and energy limit lines in
Figure 1c). The ET/P ratio from Zhang et al. [2010] seems
physically unreasonable because many points exceed the
water limit line (ET/P= 1, Figure 3e). This may raise the
following question: what is the source of the extra water to
support excess ET relative to P over the long-term? The
excess water may be derived from groundwater (irrigation),
but the ratio should not be so large (10 or 100 times) unless
a large volume of water is diverted from outside of the basin.
Therefore, our results (ET) seem more physically reasonable
from the perspective of the Budyko constraints (limits of
water availability). The high performance of the Fu’s equation
(equation (1)) with NN estimatedϖ in estimatingmean annual
ET provides confidence in the NN model.

4. Summary and Implications of This Study

[26] Development of a universal equation ofϖ that applies
to diverse basins globally provides a powerful tool to evaluate
water-energy partitioning using the robust Budyko framework
(Fu’s equation) with readily available data. The detailed devel-
opment of this formulation using small and large basins and
testing using ~36,600 basins globally against an independent

ET product provides confidence in the neural network
predictive equations. This tool can be used to estimate the
water-energy balance of gauged basins and compared with
monitoring data, but more importantly it can also be applied
to predict ungauged basins which is a critical issue in
hydrology [Hrachowitz et al., 2013]. There is increasing
interest and modification of Land Surface Models (e.g.,
Global Land Data Assimilation System, NOAH, MOSAIC,
Variable Infiltration Capacity (VIC), and Community Land
Model) to assess climate variability and land use change
impacts on water resources. These LSMs can be evaluated
against the Budyko framework developed in this study to
determine how physically reasonable the model output is
in terms of water and energy limitations in different regions.
While the current model was developed using long-term average
state variables (multiyear mean NDVI) with results reflecting
long-term equilibrium conditions of water-energy partitioning
in basins, future efforts should evaluate the feasibility of devel-
opingmore dynamicmodels to accurately capture ecohydrologic
processes in response to shorter-term forcing in basins as was
done by Zhang et al. [2008]. This study should facilitate wider
applications of Budyko framework in assessing water-energy
partitioning at basin scales globally.

[27] Acknowledgments. We acknowledge “100 talents program”
(Y323025111 and Y251101111) and Western Development Project (KZCX2-
XB3-10) of the Chinese Academy of Sciences and the Key Project of the
National Twelfth Five-Year Research Program of China (2010BAE00739).
We thank the Associate Editor and the two anonymous reviewers for their con-
structive comments, which greatly improved our manuscript.
[28] The Editor thanks two anonymous reviewers for their assistance in

evaluating this paper.

References
Budyko, M. I. (1974), Climate and Life, Academic, New York.
Choudhury, B. J. (1999), Evaluation of an empirical equation for annual
evaporation using field observations and results from a biophysical model,
J. Hydrol., 216(1–2), 99–110.

Donohue, R. J., M. L. Roderick, and T. R. McVicar (2007), On the impor-
tance of including vegetation dynamics in Budyko’s hydrological model,
Hydrol. Earth Syst. Sci., 11(2), 983–995.

Donohue, R. J., M. L. Roderick, and T. R. McVicar (2010), Can dynamic
vegetation information improve the accuracy of Budyko’s hydrological
model?, J. Hydrol., 390(1–2), 23–34.

Donohue, R. J., M. L. Roderick, and T. R. McVicar (2011), Assessing the
differences in sensitivities of runoff to changes in climatic conditions
across a large basin, J. Hydrol., 406(3–4), 234–244.

Donohue, R. J., M. L. Roderick, and T. R. McVicar (2012), Roots, storms
and soil pores: Incorporating key ecohydrological processes into
Budyko’s hydrological model, J. Hydrol., 436–437, 35–50.

Duan, Q., et al. (2006), Model Parameter Estimation Experiment (MOPEX):
An overview of science strategy and major results from the second and
third workshops, J. Hydrol., 320(1–2), 3–17.

Fu, B. P. (1981), On the calculation of the evaporation from land surface (in
Chinese), Sci. Atmos. Sin., 5(1), 23–31.

Gentine, P., P. D’Odorico, B. Lintner, G. Sivandran, and G. D. Salvucci (2012),
Interdependence of climate, soil, and vegetation as constrained by the Budyko
curve, Geophys Res. Lett., 39, L19404, doi:10.1029/2012GL053492.

Hrachowitz, M., et al. (2013), A decade of Predictions in Ungauged Basins
(PUB)—A review, Hydrol. Sci. J., 58, 1198–1255.

Li, D., M. Pan, Z. Cong, L. Zhang, and E. Wood (2013), Vegetation control
on water and energy balance within the Budyko framework, Water
Resour. Res., 49, 1–8, doi:10.1002/wrcr.20107.

Milly, P. C. D. (1994), Climate, interseasonal storage of soil-water, and the
annual water-balance, Adv. Water Resour., 17(1–2), 19–24.

Milly, P. C. D., and A. B. Shmakin (2002), Global Modeling of land water
and energy balances. Part II: Land-characteristic contributions to spatial
variability, J. Hydrometeorol., 3(3), 301–310.

Pan, M., A. K. Sahoo, T. J. Troy, R. K. Vinukollu, J. Sheffield, and
E. F. Wood (2012), Multisource estimation of long-term terrestrial water
budget for major global river basins, J. Clim., 25(9), 3191–3206.

Pitman, A. J. (2003), The evolution of, and revolution in, land surface
schemes designed for climate models, Int. J. Climatol., 23(5), 479–510.

XU ET AL.: FACTORS CONTROLLING WATER-ENERGY BALANCE

6128



Potter, N. J., L. Zhang, C. D. Milly, T. A. McMahon, and A. J. Jakeman
(2005), Effects of rainfall seasonality and soil moisture capacity on mean
annual water balance for Australian catchments, Water Resour. Res., 41,
W06007, doi:10.1029/2004WR003697.

Rodell, M., et al. (2004), The Global Land Data Assimilation System, Bull.
Am. Meteorol. Soc., 85(3), 381–394.

Roderick, M. L., and G. D. Farquhar (2011), A simple framework for relating
variations in runoff to variations in climatic conditions and catchment prop-
erties, Water Resour. Res., 47, W00G07, doi:10.1029/2010WR009826.

Shao, Q., A. Traylen, and L. Zhang (2012), Nonparametric method for esti-
mating the effects of climatic and catchment characteristics on mean an-
nual evapotranspiration, Water Resour. Res., 48, W03517, doi:10.1029/
2010WR009610.

Wang, D., and M. Hejazi (2011), Quantifying the relative contribution of
the climate and direct human impacts on mean annual streamflow in
the contiguous United States, Water Resour. Res., 47, W00J12, doi:10.1029/
2010WR010283.

Williams, C. A., et al. (2012), Climate and vegetation controls on the surface
water balance: Synthesis of evapotranspiration measured across a global
network of flux towers, Water Resour. Res., 48, W06523, doi:10.1029/
2011WR011586.

Xia, Y., et al. (2012), Continental-scale water and energy flux analysis and
validation for the North American Land Data Assimilation System project
phase 2 (NLDAS-2): 1. Intercomparison and application of model prod-
ucts, J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

Yang, D., F. Sun, Z. Liu, Z. Cong, G. Ni, and Z. Lei (2007), Analyzing spa-
tial and temporal variability of annual water-energy balance in nonhumid
regions of China using the Budyko hypothesis, Water Resour. Res., 43,
W04426, doi:10.1029/2006WR005224.

Yang, H., D. Yang, Z. Lei, and F. Sun (2008), New analytical derivation of
the mean annual water-energy balance equation, Water Resour. Res., 44,
W03410, doi:10.1029/2007WR006135.

Yang, D., W. Shao, P. J. F. Yeh, H. Yang, S. Kanae, and T. Oki (2009), Impact
of vegetation coverage on regional water balance in the nonhumid regions
of China,Water Resour. Res., 45, W00A14, doi:10.1029/2008WR006948.

Zhang, L., K. Hickel, W. R. Dawes, F. H. S. Chiew, A. W. Western, and
P. R. Briggs (2004), A rational function approach for estimating mean an-
nual evapotranspiration, Water Resour. Res., 40, W02502, doi:10.1029/
2003WR002710.

Zhang, L., N. Potter, K. Hickel, Y. Zhang, and Q. Shao (2008), Water bal-
ance modeling over variable time scales based on the Budyko framework
– Model development and testing, J. Hydrol., 360(1–4), 117–131.

Zhang, K., J. S. Kimball, R. R. Nemani, and S. W. Running (2010), A con-
tinuous satellite-derived global record of land surface evapotranspiration
from 1983 to 2006, Water Resour. Res., 46, W02502, doi:10.1029/
2009WR008800.

Zhang, Y. Q., R. Leuning, F. H. S. Chiew, E. L. Wang, L. Zhang, C. M. Liu,
F. B. Sun, M. C. Peel, Y. J. Shen, and M. Jung (2012), Decadal trends in
evaporation from global energy and water balances, J. Hydrometeorol.,
13(1), 379–391.

XU ET AL.: FACTORS CONTROLLING WATER-ENERGY BALANCE

6129



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


